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Recently the vibrations of semi-bounded isotropic bodies with cavities have been studied 
in detail by using superposition for canonically shaped cavities. Analyzing a wave field with 
anisotropy and noncanonically shaped defects requires completely different methods, including 
the method of limiting integral equations. The method of limiting elements, which was de- 
veloped in recent years is based on knowing the fundamental solutions for an orthotropic me- 
dium. Here the methods of limiting integral equations and limiting elements are applied to 
orthotropic media based on a fundamental solution which we constructed in the form of singular inte- 
grals along a contour in the complex plane; here such a representation allows effective con- 
struction of the matrix coefficients of the system in the form of singular integrals with the 
simplest approximation of the unknowns in the element. It also allows the wave field to be 
examined at any point in the medium. 

i. We examine the problem of establishing the vibrations of an elastic orthotropic half- 
plane x 3 < 0, which is weakened by a void with a smooth boundary Z. We assume that the vibra- 
tions of the half-plane are caused by a normal load applied at the boundary x s = 0. After 
the time multiplier is removed, the equations of motion and the boundary conditions have the 
form 

~i~j+p~eu~=0 (i=i, 3, ]=i, 3); (i.i) 

c;~1 = C~e~l  + C,as3a, oaa = CIaei~ + Caa~aa, (~a = 2C~s~a, ( 1 . 2 )  

for x3 = 0, ol~ = 0, 033 = -p(xl) 

[0 ,  X l ~  ll, 
P (Xl) = '[ P (,Z,1) ' 371 ~ ll,~ (~ i jn j  I[ "~ 0 , 

where nj are the components of the unit vector which point outwards into the elastic medium, 
normal to the curve Z. The radiation conditions, which are formulated using the principle 
of limiting contours [i], complete the problem specification. 

A representation of the fundamental solution, formulated [2] for an orthotropic half- 
plane, can be used to reduce the boundary problem to a system of limiting integral equations. 
The fundamental solution, which satisfies homogeneous boundary conditions for x 3 = 0, o!m) = 
0, o! m) = 0 (m = i, 3) is constructed using the Fourier transform: 

u~? ) = b(F) + s F  ) ( <  .~ = ,~, ~), 

~(rn) (,271, X3, ~1, ~3) = (4TtC55)--IFh m (X3, ~3) f oxp [~A~ (~l - -  231)1 X 
O 

2 

j = l  
2 

S(~ m) (x> x 3, %, ~a) ( 4 . C ~ ) - '  ] exp [;]~'~} ( ; ,  - -  x,)] ~] ,m) A - '  , " = �9 Q~rp(~)  ( ~ ) t z - l ( t r ) e x p [ k ( ) ~ r ~ a + ~ , ~ x a ) ] d [ J .  (i.4) 
(I r,p=l 

Here 

r~. ,(x3,  ~ a ) =  i ( l  - -  6k,.) s ign (~a - -  x 3 ) +  5h,~, 

zj = ~.j(,3)= [ (2~,~)-~ ( - - b  ( ~ ) •  d ~ (~ ) ) ]  % 

d (t3) = b~ (1~) - -  4W~ (13), ,~ (~0 = ( ~  - -  ~-~) ~l" 

The following parameters are introduced 

~f l = C./Caa,  75 = C55/Caa, 7 7  = Ci3/Csa, k 2 = ,oo)2/C3a, 

(1.5) 
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(m) ~(m), 
and Qk~(8) and Wk~$) 
X~ +-~ ~; 

= 9 I 

(ra) 
Q~,~ (fi) = /~17  ) (~) q~]~) (;~) ( i ~ ) "  (• = o, • = l), 

Q(a~ ) (~) = KiT ) (~) Ra i (~) (] ---- t ,  2), 

(m) ~(m) 
are obtained from Qkz~(B) and qk~($), respectively, by substituting 

K~] ) (~) ---- l~i..A (t~) P Q~.) - -  ~"Q (t..) B (~),  

Ki,~ ) (~) = ~:p ()@ B (;.~) - -  A (Z~) ~.~P (Z~), 

ii(3) 1] (~)  = - -  ~ (%1 IO ( X l )  Q ()~_-) + )~2P (%~) Q (~)), 

K~ 3) (~) 2).,P ().~) Q (~),  A (X) = ~ ~-, ?~-" + I, 

B (~) = V Y  + V~W~ ~ - -  w ,  P (~) -- (~'~ + Ww - -  v~) ~-" + ' ; ~  + ~, 

(70 = v ~  ~ + ~%" --  l ,  ~ = W ~  - -  v~  ~" + ~, 

(~) = ~ (w + ','7) (~  - ~ )  [;.~,, ( ~  (Vl - v~) - ~) - (Vl~ ~ - ~)]. 

The integrands in (1.4)-(1.6) have two pairs of branch points on the real axis: $ = 
• and ~ = • and also two pairs which are determined from the equation d(~) = 0. 
Depending on the combination of the elastic constants, we note that this equation can have 
real, purely imaginary, and complex roots [3]. Moreover, the function A(~) has a zero on 
the real axis, which corresponds to the Rayleigh wave for an orthotropic half-plane [4]. 

(1.6) 

The contour o coincides with the real axis everywhere except for real poles and branch points, 
which it circumvents according to the principle of limiting contours as follows: positive 
poles bend downwards and negative ones bend upwards. 

2. Based on the dynamic reciprocity theorem [5] and an analysis of the limiting values 
of the fundamental solution [2], the problem is reduced to a system of limiting integral 
equations relative to the displacements on the boundary of the cavity: 

~ (y) + ~ 4 F  (~, ~ ~j (x) ~,~ (~) dZ~=.Y(y) ,  ~=(~, ,  ~) ,  ~=~y~, y~)~  l. (2 .  i )  

We note that the integral in (2.1) is a principle value integral in the Cauchy sense and 

umSt(g) ~- __ ,IP(xl) U(3m)(x 1, O, y) dx~is the standard displacement in the medium without a cavity. 

11 
(m) 

Here Okj (x, y) is found according to the defining equations (1.2), into which we sub- 

stitute ~!~) (I/2) {rr(m)' U (-m.)] instead of and U~ m) ---- k u i , j - r  ~,~ j eij, in turn has the form of (1.3). 

Integral equations of the type (2.1) are analyzed efficiently by the boundary element 
method, according to which the cavity boundary Z is approximated by a piecewise curve s of + 
N elements. Let (X[p, x~D) be the coordinates of the start of the p-th element and (xzD , X+p) 
be the coordinates of its~ end; then the nodes will be points with coordinates (Ylp, Y3p), 
where 

y~p = (x-Fp + x+)/2  (k ='1, 3, p = 1, 2 . . . . .  N). 

During the discretization we will assume that the components of the displacement vector u m 
are constant on the element p and equal to the displacements of the corresponding node: 

u~(yIp, y 3 , ) =  z~v. ( 2 . 2 )  

By using the collocation method, we require that the system (2.1) be satisfied for the nodal 
points (Ylq, Y3q), where q = i, 2 .... ,N. As a result, we come to a linear algebraic system 
for 2N unknown nodal displacements: 

N 
~,,,p/2 "t- ~ a,nprjUjr = gmp (rn, / = 1 , 3 ,  p : { , 2 ,  . . . ,  N). ( 2 . 3 )  

r = l  

H e r e  

[' G(m) 
amp# = j ~ (glp, Ynv, xx, x3) nk (x,, x3) dlx, 

Zr 

st gmp--u, , (yv)  (m,]----1,3,  p = l , 2 , . . . , N ) .  ( 2 . 4 )  
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We note that after integration over an element in (2.4), amprj is represented in the form of 
singular integrals over the contour o, as was done in [6]. Due to the complexity of the re- 
sultant expressions, these integrals are not produced here. Once we solve the system (2.3) 
and find the value of the nodal displacements, we determine the wave field at the boundary 
of the half-plane: 

N 

T = I  

1 ( 2 . 5 )  
oil ~1, 0, vlr + ~l,t, v3, + ffJ) ~3, + 

- - 1  

Jm) 

h F o r t r a n  p rogram was w r i t t e n  f o r  t h e  ES-1055 compute r  t o  c a l c u l a t e  t h e  wave f i e l d  a t  
t h e  boundary  o f  t h e  h a l f - p l a n e ,  t o  d e t e r m i n e  t h e  n o d a l  d i s p l a c e m e n t s  a t  t h e  bounda ry  o f  t h e  
c a v i t y ,  and t h e n  t o  c a l c u l a t e  t h e  wave f i e l d  a t  t h e  b o u n d a r y  o f  t h e  h a l f - p l a n e  from Eq. ( 2 . 5 )  
f o r  a g i v e n  number o f  d e c o m p o s i t i o n  p o i n t s  o f  t h e  c a v i t y .  Here t h e  i n t e g r a l  o v e r  t h e  con-  
t o u r  o i s  c a l c u l a t e d  u s i n g  Gauss q u a d r a t u r e .  I n  t h e  n u m e r i c a l  c a l c u l a t i o n s ,  t h e  v i b r a t i o n  
s o u r c e  was t a k e n  to  be a p o i n t  f o r c e  a p p l i e d  a t  t h e  o r i g i n  o f  t h e  c o o r d i n a t e s ;  i . e . ,  p (x  1) = 
pG(xz ) .  The r e g i o n  s was t a k e n  to  be an e l i p s i s  w i t h  semiaxes  d 1 and d3, w i t h  c e n t e r  c o o r -  
d i n a t e s  xl0 and xa0,  which were r o t a t e d  a b o u t  t h e  a x i s  Ox 1 by an a n g l e  O i = ~ i / 1 8 ,  i = 1, 
2 , . . . , 9 .  The c a l c u l a t i o n s  were done f o r  ( a u s t e n i t e  s t e e l ) :  

C1~=26,27.10 m N/m 2, C~3=t4,5 t0 m N/m ~, 

C 3 3 = 2 1 , 0 ' t 0  m N/m 2, C5~=12 ,9 '10  m N/m 2 

and geometric parameters 

dl = 0,2, d3 = O J ,  xlo = O, x3o = --0,5. 

Eight and sixteen elements were used to approximate the cavity Z. We note that the relative 
error in the displacements at the boundary of the half-plane did not exceed 5% for 8 and 16 
elements. Moreover, when the cavity was approximated by an inscribed and circumscribed 
octagon, with k ~ 3, the error in the calculated wave field at the surface did not exceed 
6%. As the wave number k was increased (k ~ 5), the efficiency of this algorithm was re- 
duced, due to the very simple approximation of the type (2.2) for the unknowns on the ele- 
ment. However, the discretization method was retained, even when the unknown functions 
were approximated by linear and quadratic functions on the element, and the coefficients of 
the system (2.4) were also expressed in the form of singular integrals over the contour ~. 
Figures 1 and 2 show Re(u I - u~ t) and Re(u 3 - u~ t) as functions of the angle 8. These func- 
tions can be used as initial information for solving the inverse problem of determining the 
shape of a defect from the reflected field. 
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PARAMETRIC INSTABILITY IN THE OSCILLATIONS OF A BODY MOVING UNIFORMLY 

IN A PERIODICALLY INHOMOGENEOUS ELASTIC SYSTEM 

A. I. Vesnitskii and A. V. Metrikin UDC 531.534 

Transitional radiation of various types occurs in the uniform and rectilinear motion 
of a perturbation source in an inhomogeneous medium. In [i, 2], there is a survey of such 
radiation for electromagnetic and acoustic waves. In [3], the radiation was examined for 
elastic waves arising in the uniform motion of a mechanical object in an inhomogeneous 
elastic system. Features of the radiation in such a system are related to the interaction 
between the radiation and the oscillations of the object. Here we consider parametric ob- 
ject oscillation excitation during emission. 

When a perturbing source moves in a periodically inhomogeneous medium, the radiation has 
a discrete spectrum in the steady state [i]. In a reference system coupled to the moving 
source, the spectrum is equidistant. The object moving uniformly in a periodically inhomo- 
geneous elastic system is subject to a transverse force equivalent to the reaction of a 
spring with periodically varying rigidity. That situation naturally leads to parametric ob- 
ject oscillation [4], which is demonstrated here. It is necessary to examine such interac- 
tion for example in relation to the requirements for high-speed railroad transportation. A 
train moving over rails under certain conditions may begin to show a galloping motion, and 
here we show that the parameter region where it occurs expands as the speed increases. 

i. We consider the uniform motion z = vt of a body with mass m along an unbounded 
string whose tension and density per unit length are correspondingly N and p, and which lies 
on a periodically inhomogeneous elastic base. The rigidity of the base is described by 

k (z) = k0 (1 + ~ cos (2~z/d)), 

i n  which  k 0 i s  t h e  mean r i g i d i t y ,  d t h e  p e r i o d  o f  t h e  i n h o m o g e n e i t y ,  and p ~ 1 a d i m e n s i o n -  
l e s s  s m a l l  p a r a m e t e r .  

A d e s c r i p t i o n  o f  t h e  s e l f - c o n s i s t e n t  m o t i o n  o f  t h e  body and s t r i n g  i s  [5] 

U . - - g ~ + U ( t + ~ c o s ( •  U(at, t ) = g ( t ) ,  (i.I) 

( t - - =  ~) [U~]~==, = M ~ ( t ) ,  [U]~==t=O,~U+O for  x - - + ~  ~. 

Here U(x, t) is the transverse deviation of the string, x = zh/c and t = h~ (c 2 = N/p, h 2 = 
k0/p) are the dimensionless coordinate and time, y(t) the transverse coordinate of the body, 
with M = mh/cp and a = v/c (with a < i subsequently) the dimensionless mass and longitudinal 
velocity, and • 2~c/dh. The square brackets denote the differences between the values of 
the expressions them to the right and left of the given x. 

We seek the solution to (i.i) as 

U = U  ~  1 + . . . ,  g = g ~  ( 1 . 2 )  

2. I n  t h e  z e r o t h  a p p r o x i m a t i o n  (p  = 0 ) ,  (1.2) r e p r e s e n t s  t h e  m o t i o n  o f  a body on a 
string lying on a homogeneous elastic base: 

U?t -- U~x + U ~  U ~ (=t, t) = g~ (t), ( 2 . 1 )  

- -  U 0 (i ~2)[ x]x=at=~yo(t), [UO]x==t=O, Uo.._>_O for Z-+-Nco. 

As the solution to (2.1), one naturally takes a function describing the oscillation of 
the body-string system for t + ~. We first determine the oscillation frequency for t + ~. 
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